

universität**bonn**

Model-Free Data-Driven Science: Cutting out the Middleman

$$\inf_{y \in D} \inf_{z \in E} \|y - z\| = \inf_{z \in E} \inf_{y \in D} \|y - z\|$$

Michael Ortiz California Institute of Technology and Rheinische Friedrich-Wilhelms Universität Bonn With: Sergio Conti and Stefan Müller (uni-Bonn)

> Oberseminar "Mathematische Modelle" Fakultät für Mathematik (M6) Technische Universität München Garching bei München, 21. April, 2021

Outline

- Background and motivation:
 - New emerging paradigm: Data-Driven Science
 - How does Data Science intersect with the physical sciences? With experimental science?
 - Why Data-Driven science now? What has changed?
 - What are Model-Free Data-Driven problems?
 - Theory vs. practice: Solvers, fast search algorithms, setoriented machine learning, data mining, data repositories, data management...
- Analysis: Data-Driven problems in elasticity:
 - Existence and uniqueness of solutions
 - The topology of data convergence
 - Data-Driven relaxation
 - Extension to finite kinematics

The anatomy of field theories

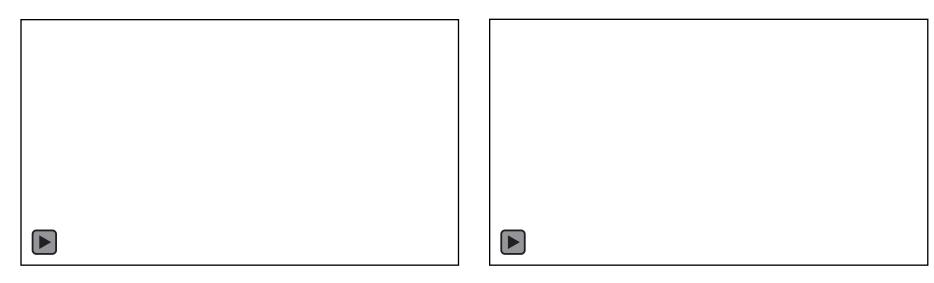
- Focus on problems in the physical sciences (as opposed to finance, marketing, social sciences...)
- Problems in the physical sciences deal with field theories
- All field theories have a common structure:

Field	Potential	Conservation	Material law
Gravitation	$g=- abla \phi$	$ abla \cdot f + 4\pi ho = 0$	f = g/G (Newton)
Electrostatics	$E = -\nabla V$	$\nabla \cdot D = 4\pi \rho$	$D = \epsilon E$
Electromagnetics	$B = \nabla \times A$	abla imes H = J	$H = B/\mu$
Diffusion	g = - abla c	$\nabla \cdot J + s = 0$	J = Dg (Fick)
Heat transfer	g = - abla T	$ abla \cdot J + s = 0$	$J = \kappa g$ (Fourier)
Elasticity	$\epsilon = \mathrm{sym} abla u$	$ abla \cdot \sigma + f = 0$	$\sigma = \mathbb{C}\epsilon$ (Hooke)
General	$\epsilon = \delta u$	$\partial \sigma + f = 0$??

- Potential relations and conservation laws are universal!
- Material laws need to be defined empirically!

The new data-rich world...

 Material data is currently plentiful due to dramatic advances in experimental science (DIC, EBSD, microscopy, tomography...) and multiscale computing (DFT → MD → DDD → SM → Hom)



3D tomographic reconstruction of particles in battery electrode

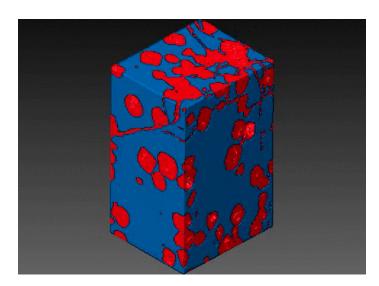
3D DIC-measured internal-strain full-field compressed PDMS sample

John Lambros, UIUC,

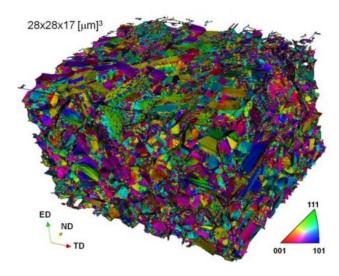
Michael Ortiz TUM 2021

The new data-rich world...

 Material data is currently plentiful due to dramatic advances in experimental science (DIC, EBSD, microscopy, tomography...) and multiscale computing (DFT → MD → DDD → SM → Hom)



Two-phase µCT analysis of Ti2AlC/Al composite¹



3D EBSD microstructure in Cu-0.17wt%Zr after ECAP²

¹Hanaor *etal*, *Mater Sci Eng A*, **672** (2019) 247. ²Khorashadizadeh, *Adv Eng Mater*, **13** (2011) 237.

Adapting to a new data-rich world...

Classical Model-Based Computational Science...



Adapting to a new data-rich world...

- Modeling = Any operation that changes the data set
- Modeling usually entails massive loss of information from material data sets, epistemic uncertainty...
- Material modeling is ad hoc, open ended, ill-posed
- There is no theory that determines material models from first principles to a desired level of accuracy
- Modeling requires heuristics and intuition: Models are only as good as the modeler's physical intuition
- Example of modeling: Deep Learning = piecewise-linear regression (cf., e.g., Gilbert Strang, 2019), requires ad hoc guessing of effective variables (a.k.a. 'features')
- Direct connection between data and prediction? Goal:

Classical inference: Data \rightarrow Model \rightarrow Prediction Model-Free Data-Driven inference: Data \longrightarrow Prediction

(cut out the middleman!)

Adapting to a new data-rich world...

Classical Model-Based Computational Science...

Alternative: Model-Free Data-Driven Computing!

Modern microscopy generates massive data sets



Modeling funnel

Material model

funnel Simulation

Manufactured data

Set/solve problems directly from data!

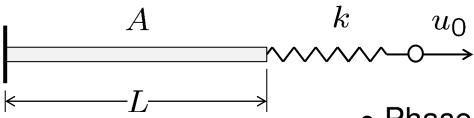
> **Eliminate** modeling bottleneck!

Modelling entails massive loss of

How?

Michael Ortiz **TUM 2021**

Elementary example: Bar and spring



Compatibility + equilibrium:

$$\sigma A = k(u_0 - \epsilon L)$$

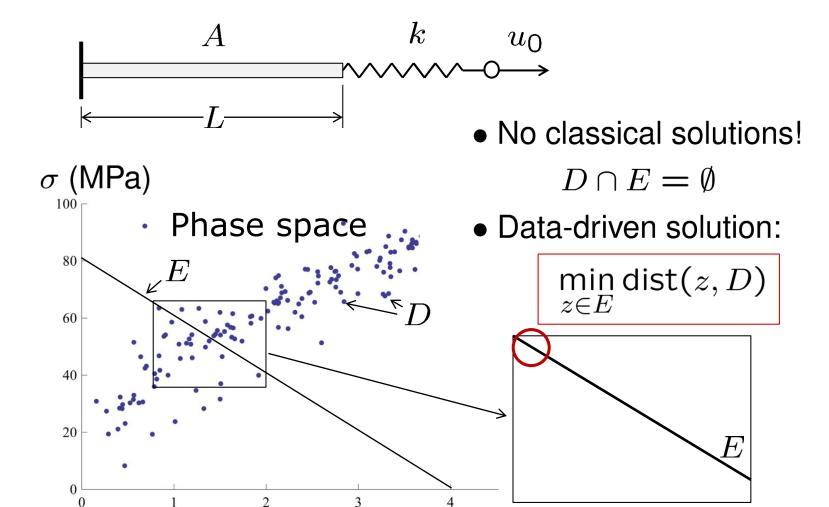
Constraint set:

$$E = \{ \sigma A = k(u_0 - \epsilon L) \}$$

- Material data set: $D \subset Z$
- Classical solution set: $D \cap E$

Phase space

Elementary example: Bar and spring



 ϵ (%)

Model-Free Data-Driven paradigm

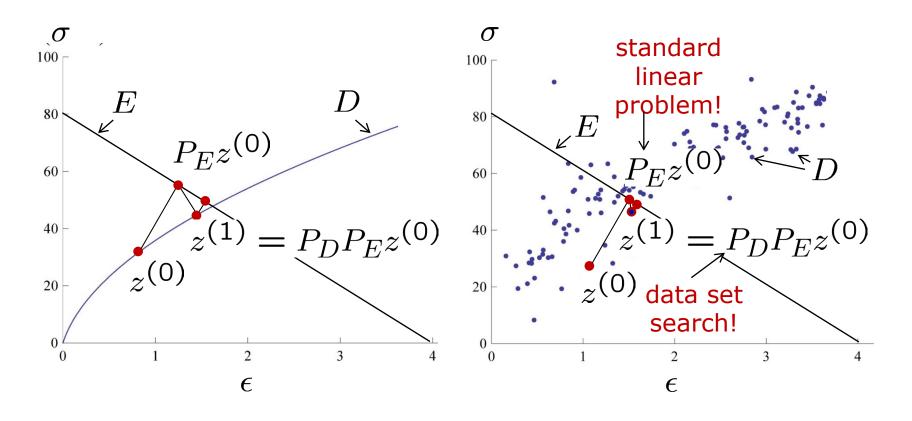
- The Model-Free Data-Driven paradigm1: Given,
 - D = {fundamental material data},
 - $-E = \{compatibility + equilibrium\},$

$$\inf_{y\in D}\inf_{z\in E}\|y-z\|=\inf_{z\in E}\inf_{y\in D}\|y-z\|$$

- Aim of Model-Free Data-Driven problems is to find the admissible state (compatibility and equilibrium) in phase space (stress, strain) closest to the material data set
- Raw fundamental material data (stress and strain) is used (unprocessed) in the formulation of the problems
- No material modeling, no biasing, no loss of information:
 The data, all the data, nothing but the data!

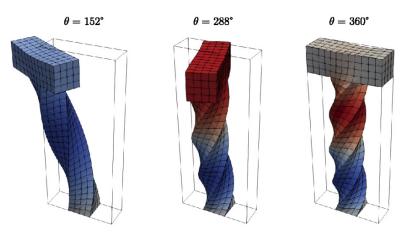
DD solvers: Fixed-point iteration

- Closest-point projections to E and D: P_E , P_D
- Fixed-point iteration: $z^{(k+1)} = P_E P_D z^{(k)}$

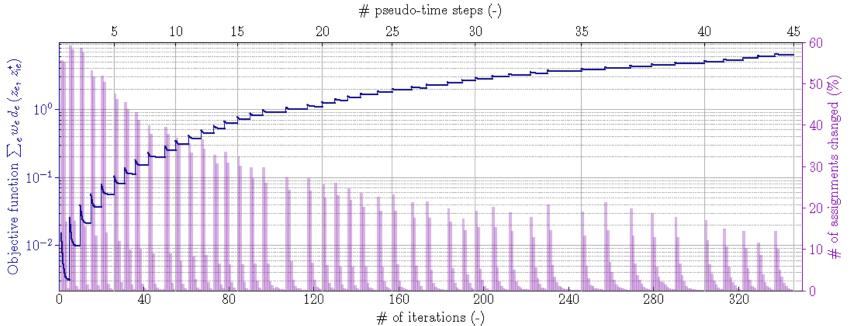


¹T. Kirchdoerfer and M. Ortiz (2015) arXiv:1510.04232. ¹T. Kirchdoerfer and M. Ortiz, *CMAME*, **304** (2016) 81–101

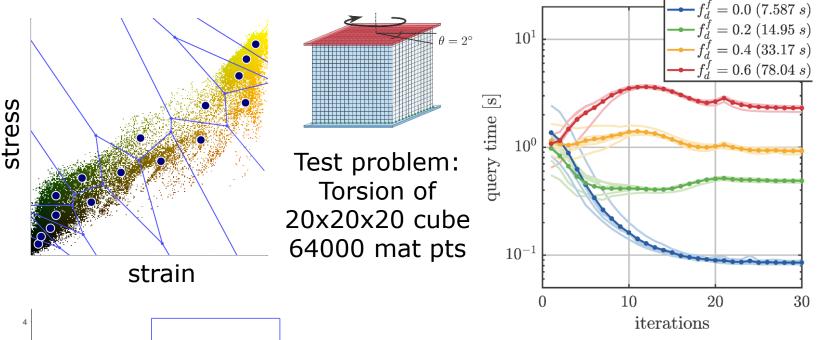
DD solvers: Fixed-point iteration

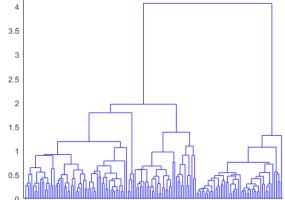


- Twisting of isotropic-elastic rod
- Randomized Green-Saint Venant
- 10,000,000 data points
- Linear convergence of fixed-point iteration wrt number of iterations
- Convergence with respect to data set size (uniform approximation)



Connection with Machine Learning



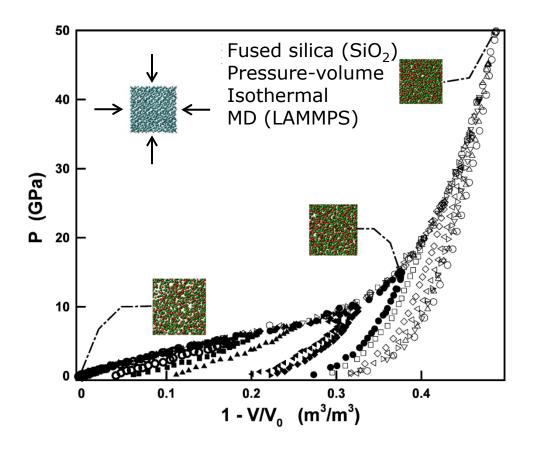


K-means hierarchical structure

- Material data set: 1 billion points
- Approx k-means search, 0.1 secs
- Set-oriented machine learning!
- We learn the structure of the data set
- No regression, no loss of information!
- The data, all the data, nothing but the data!

Connection with multiscale analysis

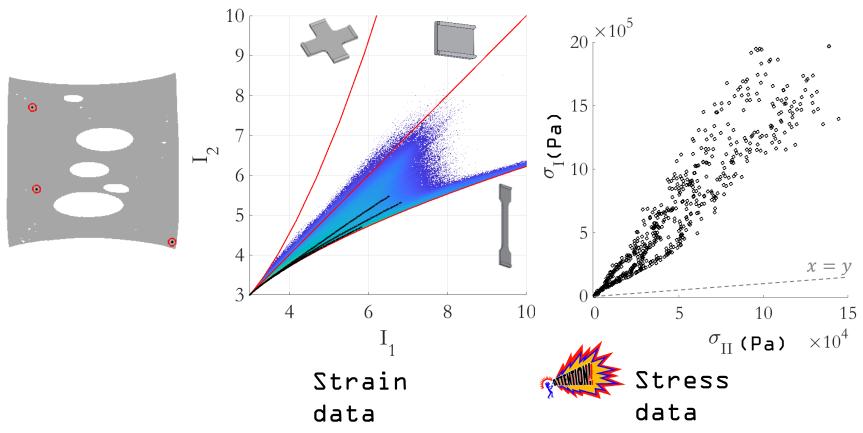
- Generate material data from microscale RVE calculations
- Upscale data directly to macroscale (no effective model!)



Michael Ortiz TUM 2021

Connection with experimental science

- Generate full-field microscopy data using DIC
- Infer stresses from inverse Data-Driven problem!



M. Dalémat, M. Coret, A. Leygue and E. Verron, *Mechanics of Mat*erials, **136** (2019) 103087.

Michael Ortiz TUM 2021

Data-Driven problems – Analysis

Problem (General Data-Driven problem)

Given:

- Phase space Z (determined by field equations)
- Material-data set $\mathcal{D} = \{y \in \mathcal{Z} : observed\}$ (measured, ab initio)
- Constraint set $\mathcal{E} = \{z \in \mathcal{Z} : \text{ field equations}\}$ (from field theory)

Minimize:
$$d(z,\mathcal{D}) + I_{\mathcal{E}}(z)$$
, or $d^2(y,z) + I_{\mathcal{D}}(y) + I_{\mathcal{E}}(z)$

- Well-posedness? (existence, uniqueness)
- Convergence with respect to data?
- Relaxation, weak convergence?
- Extension to finite kinematics?

Conti, S., Müller, S. & MO. Data-Driven Problems in Elasticity. *ARMA* **229**, 79–123 (2018). Conti, S., Müller, S. & MO. Data-Driven Finite Elasticity. *ARMA* **237**, 1–33 (2020).

Data-Driven (small-strain) elasticity

 $\Omega \subset \mathbb{R}^n$ open, bounded, Lipschitz boundary $\partial \Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N$, Γ_D , Γ_N sufficiently regular, $\mathcal{H}^{n-1}(\Gamma_D) \neq 0$

Phase space:
$$\mathcal{Z} = \{(\epsilon, \sigma) : \epsilon \in L^2(\Omega, \mathbb{R}^{n \times n}_{\mathrm{sym}}), \ \sigma \in L^2(\Omega, \mathbb{R}^{n \times n}_{\mathrm{sym}})\}$$

Constraint set $\mathcal{E} \subset \mathcal{Z}$ consists of pairs (ϵ, σ) which satisfy:

- i) Compatibility: $\epsilon = 1/2(Du + Du^T)$, u = g on Γ_D .
- ii) Equilibrium: $\operatorname{div} \sigma + f = 0$, $\sigma \nu = h$ on Γ_N .

Material data set
$$\mathcal{D} = \{(\epsilon, \sigma) \in \mathcal{Z} : (\epsilon(x), \sigma(x)) \in \mathcal{D}_{loc} \text{ a. e.} \}$$

Hooke's law: $\mathcal{D}_{loc} = \{(\epsilon, \sigma) \in \mathcal{Z}_{loc} = \mathbb{R}^{n \times n}_{sym} \times \mathbb{R}^{n \times n}_{sym} : \sigma = \mathbb{C}\epsilon \}$

Distance on \mathcal{Z} , d(y,z) = ||y-z||,

$$||z||^2 = \int_{\Omega} \frac{1}{2} \left(\mathbb{C}\epsilon \cdot \epsilon + \mathbb{C}^{-1}\sigma \cdot \sigma \right) dx, \quad z = (\epsilon, \sigma), \quad \mathbb{C} > 0$$

NB: *Universal field equations* and *material-specific data* (field-theories of physics, rational mechanics, Truesdell, Noll, ..., Tartar'70s)

Michael Ortiz TUM 2021

Classical solutions are subsumed within DD solutions

Theorem

Assume: $f \in L^2(\Omega; \mathbb{R}^n)$, $g \in H^{1/2}(\partial \Omega; \mathbb{R}^n)$, $g \in H^{-1/2}(\partial \Omega; \mathbb{R}^n)$. Let \mathcal{E} be the constraint set and let

$$\mathcal{D} = \{ (\epsilon, \sigma) \in \mathcal{Z} : \sigma(x) = \mathbb{C}\epsilon(x), \text{ a. e.} \}, \quad \mathbb{C} > 0,$$

be the material data set for Hooke's law. Then, the Data-Driven problem

$$\min\{d(z,\mathcal{D}),\ z\in\mathcal{E}\},\$$

has a unique solution in Z. Furthermore, the Data-Driven solution satisfies

$$\sigma = \mathbb{C}\epsilon$$
.

NB: Similarly for $\mathcal{D}_{loc}=\{(\epsilon,\sigma)\in\mathcal{Z}_{loc}:\sigma=\hat{\sigma}(\epsilon)\}$ with $\hat{\sigma}$ uniformly monotone (using div-curl Lemma of Murat-Tartar)

TUM 2021

Classical solutions are subsumed within DD solutions

Distance identity: $d^2(z,\mathcal{D}) = \int_{\Omega} \frac{1}{4} \mathbb{C}^{-1}(\sigma - \mathbb{C}\epsilon) \cdot (\sigma - \mathbb{C}\epsilon) dx$.

Lemma (Power identity)

$$(\epsilon, \sigma) \in \mathcal{E} \Rightarrow \int_{\Omega} \sigma(x) \cdot \epsilon(x) \, dx = \int_{\Omega} f(x) \cdot u(x) \, dx + \int_{\Gamma_D} \sigma(x) \nu(x) \cdot g(x) \, d\mathcal{H}^{n-1}(x) + \int_{\Gamma_N} h(x) \cdot u(x) \, d\mathcal{H}^{n-1}(x).$$

Lemma (Tensor Helmholtz decomposition)

$$M=\{e(u),\ u\in H^1(\Omega;\mathbb{R}^n),\ u=0\ \mbox{on}\ \Gamma_D\}$$
 , $N=\{\sigma\in L^2(\Omega;\mathbb{R}^{n imes n}_{\mathrm{sym}}),\ \mathrm{div}\,\sigma=0,\ \sigma
u=0\ \mbox{on}\ \Gamma_N\}$,

are strongly (and weakly) closed in $L^2(\Omega, \mathbb{R}^{n \times n}_{sym})$, $L^2(\Omega; \mathbb{R}^{n \times n}_{sym}) = M \oplus N$ and the decomposition is orthogonal.

Classical solutions are subsumed within DD solutions

Proof.

Apply direct method of the CoV to $F(z) = d^2(z, \mathcal{D}) + I_{\mathcal{E}}(z)$.

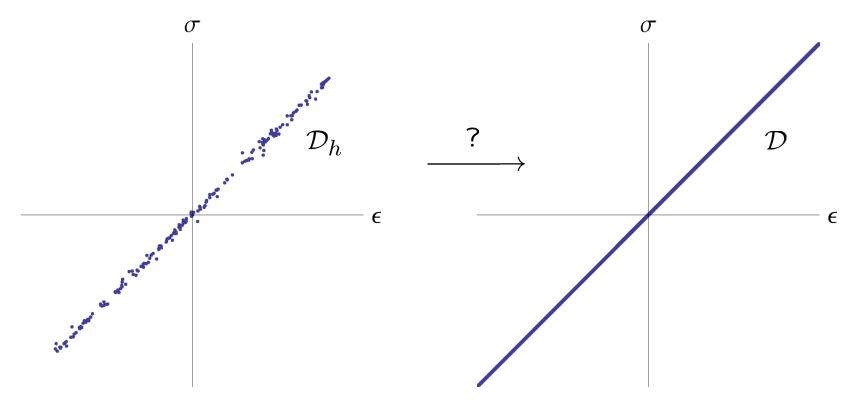
- i) Lower-semicontinuity: By the tensor Helmholtz decomposition lemma and Hahn-Banach, \mathcal{E} is weakly closed in \mathcal{Z} and $I_{\mathcal{E}}(z)$ is weakly lower-semicontinuous. By the convexity of \mathcal{D} , $d^2(z,\mathcal{D})$ is also weakly lower-semicontinuous in \mathcal{Z} .
- ii) Compactness: With $z=(\epsilon,\sigma)$, we have the identity

$$||z||^2 = 2d^2(z, \mathcal{D}) - \int_{\Omega} \sigma \cdot \epsilon \, dx$$

By the power identity, Korn, Poincaré and trace theorems, with $z \in \mathcal{E}$,

$$||z||^2 \le 2d^2(z,\mathcal{D}) + C||z|| \Rightarrow \text{coercivity}$$

iii) *Uniqueness* follows from convexity and $\sigma = \mathbb{C}\epsilon$ from the Euler-Lagrange equations.



- We are given a sequence of material data sets (sampling)
- The sequence approximates a limiting material data set
- What topology of convergence of material data sets ensures convergence of the corresponding Data-Driven solutions?
- Two cases: Limiting material data set is: i) weakly closed;
 ii) not weakly closed.

 Michael Ortiz
 TUM 2021

Definition (Mosco convergence of functions and sets)

A sequence (F_h) of functions from a Banach space X to $\overline{\mathbb{R}}$ converges to $F:X\to \overline{\mathbb{R}}$ in the sense of Mosco, or $F=M-\lim_{h\to\infty}F_h$, if

- i) For every sequence (x_h) converging weakly to x in X, $\lim \inf_{h\to\infty} F_h(x_h) \geq F(x)$.
- ii) For every $x \in X$, there is a sequence (x_h) converging strongly to x in X such that $\lim_{h\to\infty} F_h(x_h) = F(x)$.

A sequence (\mathcal{E}_h) of subsets of X converges to $\mathcal{E} \subset X$ in the sense of Mosco, or $\mathcal{E} = M - \lim_{h \to \infty} \mathcal{E}_h$, if $I_{\mathcal{E}} = M - \lim_{h \to \infty} I_{\mathcal{E}_h}$.

Lemma

Every Mosco limit functional F is weakly sequentially lower semicontinuous. In particular, every Mosco limit set $\mathcal E$ is weakly sequentially closed and $\mathcal E = M - \lim_{h \to \infty} \mathcal E$ if and only if $\mathcal E$ is weakly sequentially closed.

Theorem

Let Z be a reflexive, separable Banach space, \mathcal{D} and (\mathcal{D}_h) subsets of Z, \mathcal{E} a weakly sequentially closed subset of Z. Suppose:

- i) (Mosco convergence) $\mathcal{D} = M \lim_{h \to \infty} \mathcal{D}_h$ in Z.
- ii) (Equi-transversality) There are constants c>0 and $b\geq 0$ such that, for all $y\in \mathcal{D}_h$ and $z\in \mathcal{E}$,

$$||y - z|| \ge c(||y|| + ||z||) - b.$$

Then, $I_{\mathcal{E}}(\cdot) + d^2(\cdot, \mathcal{D}) = \Gamma - \lim_{h \to \infty} \left(I_{\mathcal{E}}(\cdot) + d^2(\cdot, \mathcal{D}_h) \right)$, with respect to the weak topology of Z.

NB Mosco convergence supplies the right topology for sequences of material data sets when the limiting set is weakly continuous.

Proof.

i) Equi-coercivity. With $F_h(z) = I_{\mathcal{E}}(z) + d^2(z, \mathcal{D}_h)$, by transversality,

$$\sqrt{F_h(z)} \ge I_{\mathcal{E}}(z) + \inf_{y \in \mathcal{D}_h} ||z - y|| \ge \inf_{y \in \mathcal{D}_h} c(||y|| + ||z||) - b \ge c||z|| - b.$$

ii) Limsup inequality. Let $z \in \mathcal{E}$. By lemma, \mathcal{D} is weakly closed and $d(z,\mathcal{D}) = \|y - z\|$. By Mosco, there is $y_h \to y$, $y_h \in \mathcal{D}_h$. Hence,

$$\limsup_{h \to \infty} d(z, \mathcal{D}_h) \le \limsup_{h \to \infty} ||z - y_h|| \le ||z - y|| = d(z, \mathcal{D}).$$

iii) Liminf inequality. Let $z_h \rightharpoonup z$, can take $z_h \in \mathcal{E}$. Let $y_h \in \mathcal{D}_h$ s. t. $\lim_{h \to \infty} d^2(z_h, \mathcal{D}_h) = \lim_{h \to \infty} \|y_h - z_h\|^2$. By equi-transversality and Mosco, there is $y \in \mathcal{D}$ s. t. $y_h \rightharpoonup y$. Hence,

$$\liminf_{h \to \infty} F_h(z_h) = \liminf_{h \to \infty} ||z_h - y_h||^2 \ge ||z - y||^2 \ge d^2(z, \mathcal{D}) = F(z).$$

Theorem (Uniform approximation)

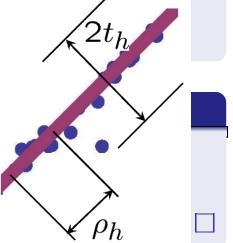
Suppose that $\mathcal{D}_h = \{z \in Z : z(x) \in \mathcal{D}_{loc,h} \text{ a. e. in } \Omega\}$, for some sequence of local material data sets $\mathcal{D}_{loc,h} \subset \mathbb{R}^{n \times n}_{sym} \times \mathbb{R}^{n \times n}_{sym}$. Let $\mathcal{D} = \{z \in Z : z(x) \in \mathcal{D}_{loc} \text{ a. e. in } \Omega\}$, where $\mathcal{D}_{loc} = \{\sigma = \mathbb{C}\epsilon\}$. Assume:

- i) (Fine approximation) There is a sequence $\rho_h \downarrow 0$ such that $d(\xi, \mathcal{D}_{loc,h}) \leq \rho_h$, $\forall \xi \in \mathcal{D}_{loc}$.
- ii) (Uniform approximation) There is a sequence $t_h \downarrow 0$ such that $d(\xi, \mathcal{D}_{loc}) \leq t_h$, $\forall \xi \in \mathcal{D}_{loc,h}$.

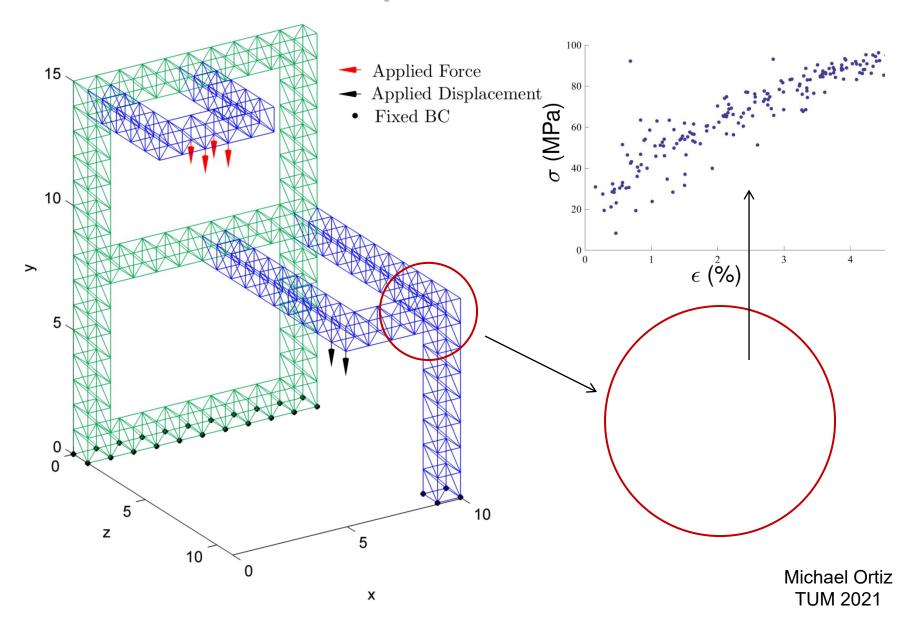
Then, $\mathcal{D} = M - \lim_{h \to \infty} \mathcal{D}_h$ in Z.

Proof.

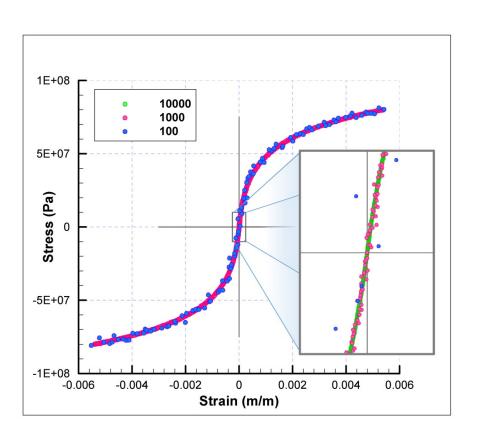
Equi-coercivity from (ii) and coercivity of the limit. Lower bound from weak closedness of \mathcal{D} and (ii). Recovery sequence from (i).

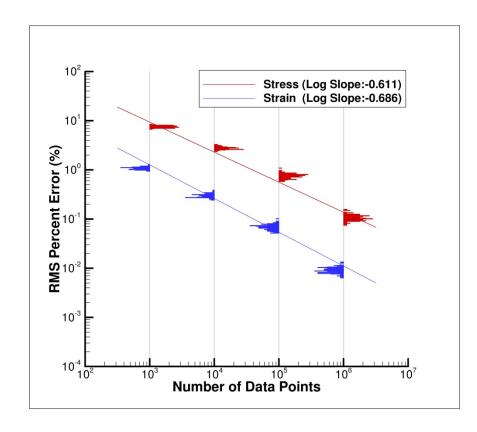


Numerical example: 3D Truss structure



Numerical example: 3D Truss structure



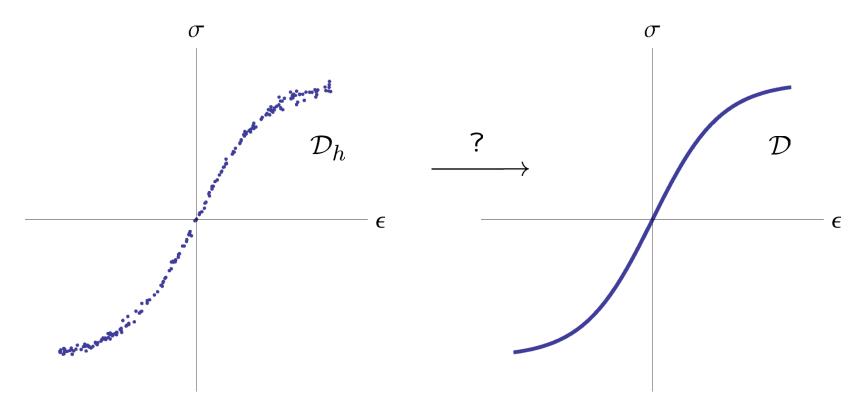


Randomized material-data sets of increasing size and decreasing scatter

Convergence with respect to data set size

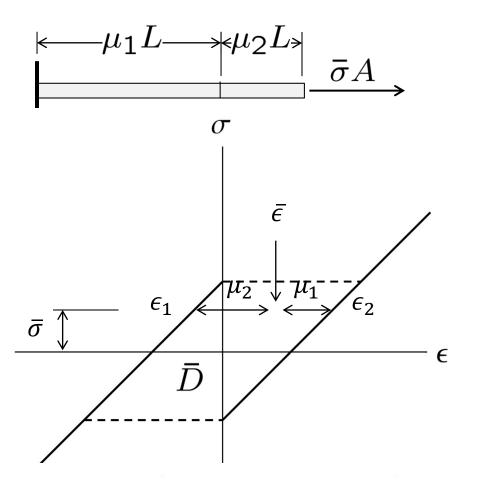
Michael Ortiz TUM 2021

T. Kirchdoerfer and M. Ortiz, *CMAME*, **304** (2016) 81–101.



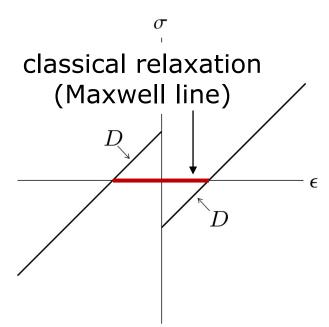
- Suppose now that the limiting set is not weakly closed
- Infimum of the distance may not be attained: Relaxation
- What topology describes material data set relaxation?
- What are the relaxed material data sets?

Data-Driven elasticity - Relaxation



Conjecture (DD relaxation)

$$D \equiv \{ \text{double well} \} \Rightarrow \{ (\bar{\epsilon}, \bar{\sigma}) \} = \overline{D}.$$



Michael Ortiz TUM 2021

Henceforth: \mathcal{Z} reflexive separable Banach space; \mathcal{E} weakly-closed subset.

Definition (Δ convergence)

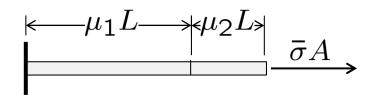
A sequence (y_h, z_h) in $\mathcal{Z} \times \mathcal{Z}$ is said to converge to $(y, z) \in \mathcal{Z} \times \mathcal{Z}$ in the Δ topology, denoted $(y, z) = \Delta - \lim_{h \to \infty} (y_h, z_h)$, if $y_h \rightharpoonup y$, $z_h \rightharpoonup z$ and $y_h - z_h \to y - z$.

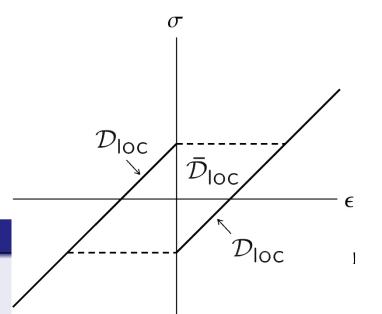
NB: We denote by $\Gamma(\Delta) - \lim_{h \to \infty} F_h$ the Γ -limit of sequences (F_h) of functions over $\mathcal{Z} \times \mathcal{Z}$ in the Δ -topology, and by $K(\Delta) - \lim_{h \to \infty} A_h$ the Kuratowski-limit of sequences (A_h) of subsets of $\mathcal{Z} \times \mathcal{Z}$.

Theorem (One-dimensional bistable material)

Let $\mathcal{Z} = L^2(0,1) \times L^2(0,1)$, $\mathcal{E} \subset \mathcal{Z}$ as before, \mathcal{D}_{loc} bistable and $\overline{\mathcal{D}}_{loc}$ the corresponding flag. Then, $\overline{\mathcal{D}} \times \mathcal{E} = K(\Delta) - \lim_{h \to \infty} \mathcal{D} \times \mathcal{E}$.

NB: Can be extended to 3D bistable materials (CMO'2018)





Proof.

Need to show that $\bar{F} = \Gamma(\Delta) - \lim_{h \to \infty} F_h$, $F_h(y,z) = d^2(y,z) + I_{\mathcal{D}}(z) + I_{\mathcal{E}}(z)$ and $\bar{F}(y,z) = d^2(y,z) + I_{\bar{\mathcal{D}}}(z) + I_{\mathcal{E}}(z)$.

Main idea: σ_h does not oscillate. Can add arbitrary oscillations in ϵ_h .

Lower bound: Let $(y_h, z_h) \stackrel{\Delta}{\to} (y, z)$. By strong convergence, have $y_h \sim z_h \sim (\epsilon_h, \sigma_h) \in \mathcal{E} \cap \mathcal{D}$. Then, $\sigma_h \sim \bar{\sigma}$ and $\epsilon_h \rightharpoonup \bar{\epsilon}$, $(\bar{\epsilon}, \bar{\sigma}) \in \bar{\mathcal{D}}$. Upper bound: By strong convergence, enough to consider $y \sim z \sim (\epsilon, \sigma) \in \bar{\mathcal{D}}$. Then $\sigma = \bar{\sigma}$. Add piecewise-constant oscillations to ϵ to obtain $\epsilon_h \rightharpoonup \epsilon$, with $(\epsilon_h, \bar{\sigma}) \in \mathcal{E} \cap \mathcal{D}$.

Equi-transversality: Follows from $\sigma \sim \bar{\sigma}$, $|\sigma(x) - \mathbb{C}\epsilon(x)| \leq \sigma_0$.

Connection between convergence of data sets and DD solutions?

Let:
$$F_h(y,z) = I_{\mathcal{D}_h}(y) + I_{\mathcal{E}}(z) + ||y-z||^2 = I_{\mathcal{D}_h \times \mathcal{E}}(y,z) + ||y-z||^2$$
.

Theorem

Let \mathcal{D} and (\mathcal{D}_h) be subsets of a reflexive separable Banach space \mathcal{Z} , \mathcal{E} a weakly sequentially closed subset of \mathcal{Z} . For $(y,z) \in \mathcal{Z} \times \mathcal{Z}$. Suppose:

- i) (Data convergence) $\mathcal{D} \times \mathcal{E} = K(\Delta) \lim_{h \to \infty} (\mathcal{D}_h \times \mathcal{E})$.
- ii) (Equi-transversality) There are constants c>0 and $b\geq 0$ such that, for all $y\in \mathcal{D}_h$ and $z\in \mathcal{E}$, $\|y-z\|\geq c(\|y\|+\|z\|)-b$.

Then:

- a) If $F_h(y_h, z_h) \to 0$, there exists $z \in \mathcal{D} \cap \mathcal{E}$ such that, up to subsequences, $(z, z) = \Delta \lim_{h \to \infty} (y_h, z_h)$.
- b) If $z \in \mathcal{D} \cap \mathcal{E}$, there exist a sequence (y_h, z_h) in $\mathcal{Z} \times \mathcal{Z}$ such that $(z, z) = \Delta \lim_{h \to \infty} (y_h, z_h)$ and $F_h(y_h, z_h) \to 0$.

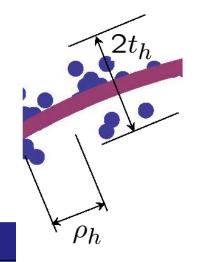
Proof.

- a) Since $F_h(y_h, z_h) \to 0$, it follows that $y_h \in \mathcal{D}_h$, $z_h \in \mathcal{E}$, $\|y_h z_h\| \to 0$. By (ii), (y_h) and (z_h) are bounded. Therefore, there are $y \in \mathcal{Z}$ and $z \in \mathcal{Z}$ such that $y_h \rightharpoonup y$ and $z_h \rightharpoonup z$ up to subsequences. By
- the weak closedness of \mathcal{E} , $z\in\mathcal{E}$. By weak lower-semicontinuity, y=z
- and $(y,z) = \Delta \lim_{h\to\infty} (y_h,z_h)$. By (i), $y\in\mathcal{D}$.
- b) Let $z \in \mathcal{D} \cap \mathcal{E}$. Then, by (i) there exists a sequence
- $(y_h, z_h) \in \mathcal{D}_h \times \mathcal{E}$ with limit $(z, z) = \Delta \lim_{h \to \infty} (y_h, z_h)$. In particular,
- we have $y_h z_h \rightarrow z z = 0$. Hence, by continuity of the norm,

$$\lim_{h \to \infty} F_h(y_h, z_h) = \lim_{h \to \infty} \left(I_{\mathcal{D}_h}(y_h) + I_{\mathcal{E}}(z_h) + ||y_h - z_h||^2 \right) = 0,$$

as required.

Example of Delta-convergence of sets



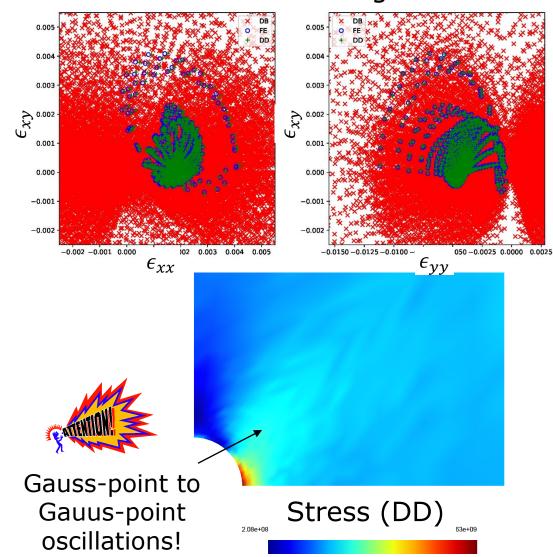
Theorem (Uniform set convergence)

Let $\mathcal{E} \subset \mathcal{Z}$ be weakly sequentially closed, \mathcal{D} , $\overline{\mathcal{D}} \subset \mathcal{Z}$. Suppose:

- i) (Data convergence) $\overline{\mathcal{D}} \times \mathcal{E} = K(\Delta) \lim_{h \to \infty} (\mathcal{D} \times \mathcal{E})$.
- ii) (Fine approximation) There is a sequence $\rho_h \downarrow 0$ such that $d(\xi, \mathcal{D}_{loc,h}) < \rho_h$, $\forall \xi \in \mathcal{D}_{loc}$.
- iii) (Uniform approximation) There is a sequence $t_h \downarrow 0$ such that $d(\xi, \mathcal{D}_{loc}) < t_h$, $\forall \xi \in \mathcal{D}_{loc,h}$.
- iv) (Transversality) There are constants c>0 and $b\geq 0$ such that, for all $y\in \mathcal{D}$ and $z\in \mathcal{E}$, $\|y-z\|\geq c(\|y\|+\|z\|)-b$.

Then,
$$\overline{\mathcal{D}} \times \mathcal{E} = K(\Delta) - \lim_{h \to \infty} (\mathcal{D}_h \times \mathcal{E})$$
.

DD relaxation – Finite elements



Nonlinear elasticity – set-up

Phase space: For
$$p \in (1, \infty)$$
, $\frac{1}{p} + \frac{1}{q} = 1$ $Z = X_{p,q} := \{(F,P) \in L^p(\Omega; \mathbb{R}^{n \times n}) \times L^q(\Omega; \mathbb{R}^{n \times n})\}$, Constraint set: \mathcal{E}_0 consists of $(F,P) \in X_{p,q}$ s.t. $\exists u \in W^{1,p}$ $F = Du$ in Ω , $u = g_D$ on Γ_D , $\operatorname{div} P + f = 0$ in Ω , $P\nu = h_N$ on Γ_N .

$$\mathcal{E} := \{(F, P) \in \mathcal{E}_0 : FP^T \text{symmetric a.e.} \}$$
 (angular momentum)

Local data sets:

$$\mathcal{D} = \{ (F, P) \in X_{p,q} : (F(x), P(x)) \in \mathcal{D}_{loc} \text{ a.e.} \}.$$

Deviation function measures distance from the data set

$$\psi_{\mathcal{D}_{loc}}(F, P) := \inf\{\frac{1}{p}|F - F'|^p + \frac{1}{q}|P - P'|^q : (F', P') \in \mathcal{D}_{loc}\}$$
$$J(F, P) = \int_{\Omega} \psi_{\mathcal{D}_{loc}}(F, P) dx$$

Goal: minimize J in \mathcal{E}

One typical result

$$\psi_{\mathcal{D}_{loc}}(F,P) := \inf\{\frac{1}{p}|F - F'|^p + \frac{1}{q}|P - P'|^q : (F',P') \in \mathcal{D}_{loc}\}$$
$$J(F,P) = \int_{\Omega} \psi_{\mathcal{D}_{loc}}(F,P) \, dx, \qquad \mathcal{E} \text{ equilibrium set}$$

Theorem

Assume $\inf_{\mathcal{E}} J = 0$. If \mathcal{D}_{loc} is (p,q) coercive and div-curl closed then the infimum is attained by $(F,P) \in \mathcal{E} \cap \mathcal{D}$.

(p,q)-coercive:

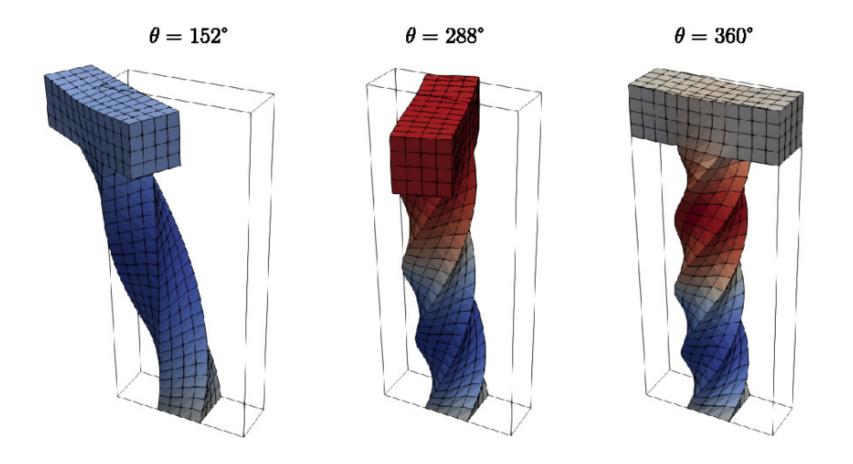
$$\exists c > 0 \ \forall (F, P) \in \mathcal{D}_{loc} \quad F \cdot P \ge \frac{1}{c} |F|^p + \frac{1}{c} |P|^q - C$$

(p,q) div-curl closed: $(F_k,P_k) \rightharpoonup (F_*,P_*)$, $(F_k,P_k) \in \mathcal{D}_{loc}$ a.e., $\operatorname{curl} F_k$ compact in $W^{-1,p}$, $\operatorname{div} P_k$ compact in $W^{-1,q}$ $\Longrightarrow (F_*,P_*) \in \mathcal{D}_{loc}$ a.e.

There are interesting examples for D_{loc} of the form $\{(F, DW(F)) : F \in \mathbb{R}^{n \times n}\}$

with $W: \mathbb{R}^{n \times n} \to \mathbb{R}$ which satisfies $\min W = W(\mathrm{Id})$ and W(QF) = W(F) for all $Q \in SO(n)$.

DD finite elasticity - Numerics



Concluding remarks

- Model-Free Data-Driven computing: The data, all the data, nothing but the data!
- New class of variational problems in phase space
- New natural notion of convergence of data sets and relaxation (different from relaxation of the energy)
- Connections with compensated compactness, Aquasiconvexity, G-closure in homogenization
- Natural connections with div-curl quasiconvexity, quasimonotonicity (K. Zhang), polymonotonicity
- Data-driven computing is likely to be a growth area in an increasingly data-rich world and to change the way in which data is mined, stored, exchanged, disseminated and utilized in science and in industry!

Concluding remarks

Thank you!