# Minimum principles for characterizing the trajectories and microstructural evolution of dissipative systems

M. Ortiz

California Institute of Technology In collaboration with: S. Conti, C. Larsen, A. Mielke, C. Richardson



Champagne, II, October 13, 2008



## Systems with evolving microstructure

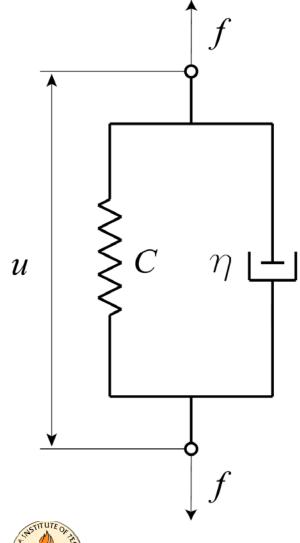
 The behavior of the systems of interest is governed by both energy and kinetics, e. g., through an equation of evolution of the form

$$\partial \Psi(\dot{u}) + DE(t,u) = 0, \begin{cases} \Psi \equiv \textit{dissipation potential} \\ E \equiv \textit{energy} \end{cases}$$

- However: Energies of interest often lack differentiability and lower-semicontinuity
- Meaning of equation of evolution, 'solutions'?
- Effective macroscopic kinetics?
- Wanted: a theoretical framework that extends
   CoV to dissipative problems...



#### Classical rate variational problems



• Potential energy:

$$E(t,u) = \frac{C}{2}u^2 - f(t)u$$

- Dissipation potential:  $\Psi(v) = \frac{\eta}{2}v^2$
- Rate potential:

$$G(t, u, v) \equiv \Psi(v) + DE(t, u) v$$

• Rate problem: Given t, u,  $\min_v G(t, u, v)$ 

Euler-Lagrange equations:

$$\partial \Psi(v) + DE(t, u) = 0$$
Michael Ortiz SES 2008



• Energy-dissipation functional: For  $\epsilon > 0$ ,

$$F_{\epsilon}(u) = \int_{0}^{T} e^{-t/\epsilon} G(t, u, \dot{u}) dt$$

• Minimum principle:  $\mathbb{Y} = \{u : [0, T] \to Y\},\$ 

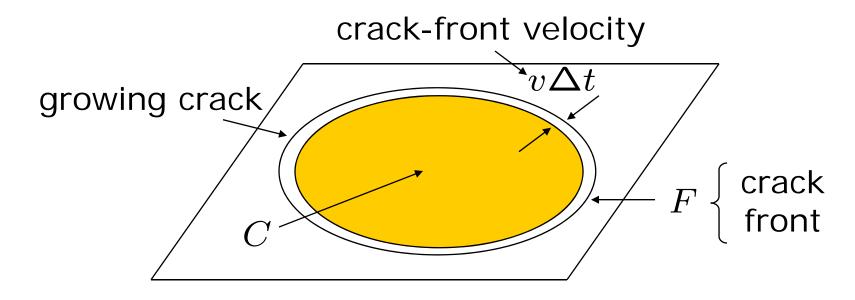
$$\inf_{u\in\mathbb{Y}}F_{\epsilon}(u)$$

• Euler-Lagrange eqs.,  $G(u, \dot{u}) = \Psi(\dot{u}) + DE(u)\dot{u}$ ,  $-\epsilon D^2 \Psi(\dot{u}) \ddot{u} + D\Psi(\dot{u}) + DE(t, u) = 0$ 

• Relaxation: 
$$sc^-F_{\epsilon}(u) \stackrel{?}{=} \int_0^T e^{-t/\epsilon} \bar{G}_{\epsilon}(t,u,\dot{u}) dt$$



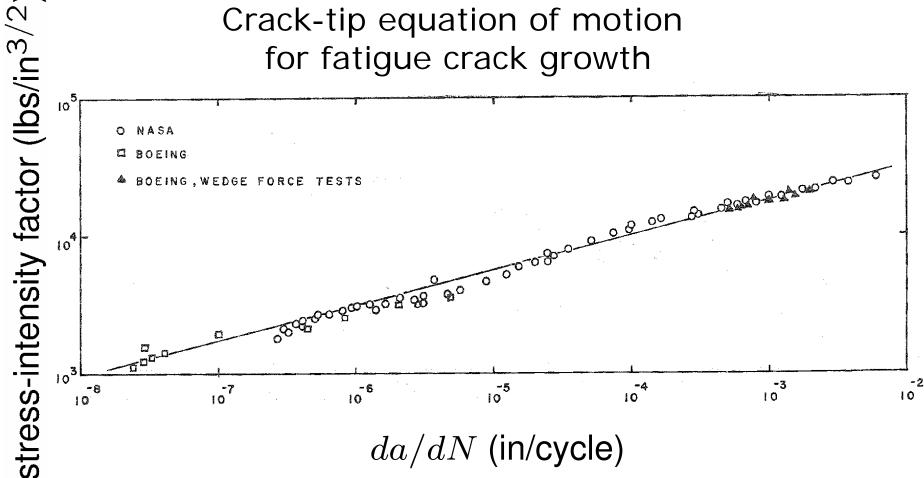
Causal limit:  $\bar{G}_{\epsilon} \to \bar{G}$  as  $\epsilon \to 0$ ?



- Energy:  $E(u) = \int_{\Omega} W(\nabla u) dx + \text{forcing terms}$
- Dissipation:  $\Psi(v) = \int_F \psi(v) d\mathcal{H}^{n-2}$ 
  - Crack front F, velocity v, defined distributionally

## The rate problem of LEFM

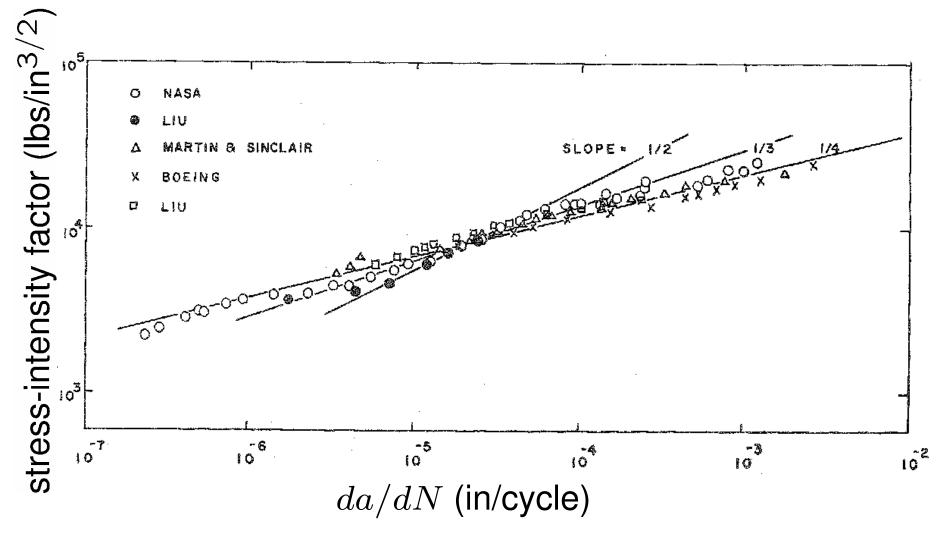
Crack-tip equation of motion for fatigue crack growth





Crack-growth data for 2024-T3 aluminum alloy (P. Paris and F. Erdogan, ASME Trans (1963)

#### The rate problem of LEFM





Crack-growth data for 2024-T3 aluminum alloy (P. Paris and F. Erdogan, ASME Trans (1963)

Michael Ortiz SES 2008

  
 Dissipation:   
 
$$\Psi = \int_{F(t)} (\alpha + v^p) \, d\mathcal{H}^{n-2}$$
   
 nucleation energy

rate-dependent crack-tip equation of motion

• Energy-dissipation functional:  $F_{\epsilon}(u) :=$ 

$$\int_0^T e^{-t/\epsilon} \left\{ \int_{F(t)} (\alpha + v^p) d\mathcal{H}^{n-2} + \frac{1}{\epsilon} \int_{\Omega} W(\nabla u) dx \right\} dt$$

- Trajectories:  $\mathbb{Y} \sim \{u(t) \in SBV_p(\Omega), \text{ crack increasing}\}\$
- Variational problem:  $\inf_{u \in \mathbb{Y}} F_{\epsilon}(u)$

$$\inf_{u\in\mathbb{Y}}F_{\epsilon}(u)$$

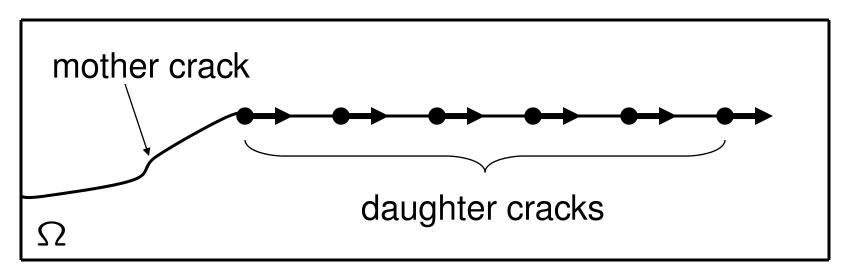
**Theorem** (C. Larsen, MO, C.L. Richardson) *The lower* semicontinuous envelop of  $F_{\epsilon}$  in  $\mathbb{Y}$  is:

$$sc^{-}F_{\epsilon}(u) = \int_{0}^{T} e^{-t/\epsilon} \left\{ \frac{1}{\epsilon} \int_{\Omega} W(\nabla u) dx + \gamma \int_{F(t)} v d\mathcal{H}^{n-2} \right\} dt$$
where:  $\gamma = p \left( \frac{\alpha}{p-1} \right)^{\frac{p-1}{p}}$ 

 Relaxed energy-dissipation functional is rate-independent! (Griffith brittle fracture)



**Sketch of proof**: Mother-daughter mechanism:

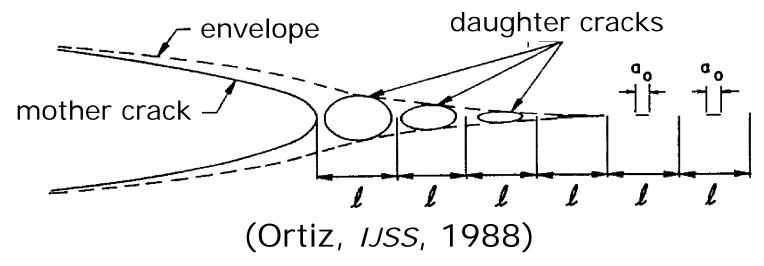


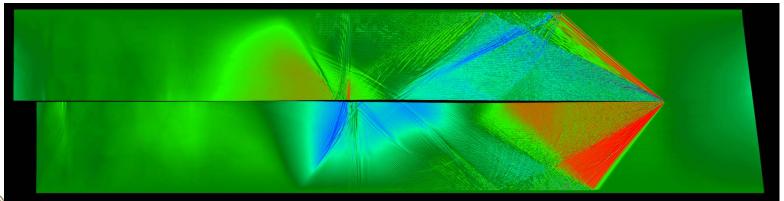
• Twin daughters (optimal by Jensen's inequality):

$$\Psi = n\alpha + n\left(\frac{v}{n}\right)^p \to \min \Rightarrow$$

$$n_{\min} = \left(\frac{p-1}{\alpha}\right)^{(1/p)} v, \quad \Psi_{\min} = p\left(\frac{\alpha}{p-1}\right)^{(1-1/p)} v$$

•The mother-daughter crack mechanism:







## Concluding remarks

- Energy-dissipation functionals provide a useful tool for understanding microstructure evolution within the framework of the calculus of variations.
- They help to identify the 'effective' kinetics and energetics of systems that exhibit evolving microstructure
- Recovery sequences yield insight into microstructural evolution mechanisms
- Mother-daughter mechanism beats crack-front rate-dependency in fracture mechanics
- Causal limit?
- ! Inertia?

