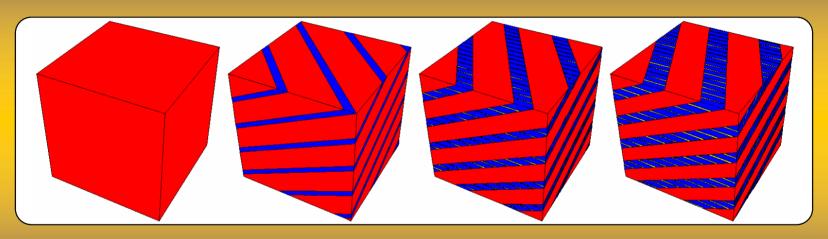
Multiscale modeling of the iron *bcc* → *hcp* martensitic phase transformation

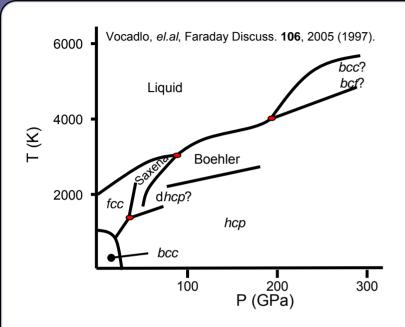


Kyle J. Caspersen and Emily Carter
Department of Chemistry and Biochemistry
University of California Los Angeles

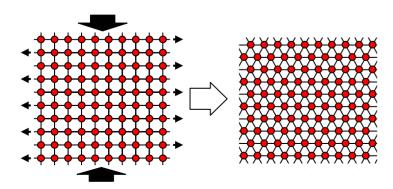
Adrian Lew* and Michael Ortiz Graduate School of Aeronautics California Institute of Technology

Funded by the Department of Energy - Accelerated Strategic Computing Initiative (DOE-ASCI)

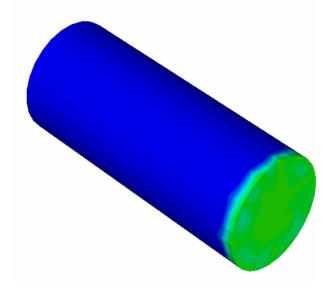
Iron Properties



Ground state ferromagnetic *bcc* undergoes a *martensitic* phase transformation to non-magnetic *hcp* at ~10 GPa.



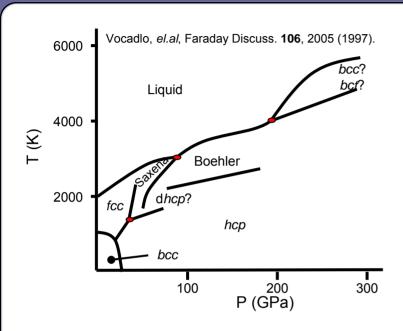
A strong shock wave will induce phase transitions producing complicated microstructure.



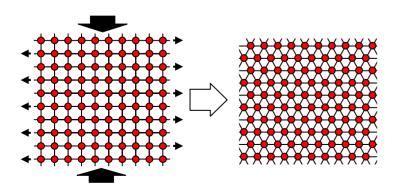
- considerable scatter in the measured transformation pressures
- large hysteresis

Goal: understand scatter and hysteresis in transition pressures

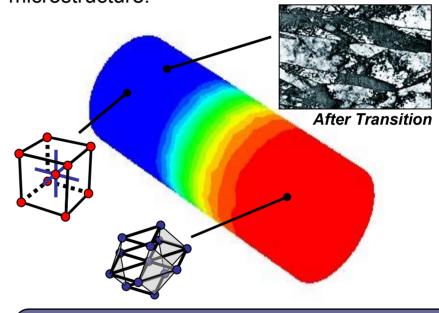
Iron Properties



Ground state ferromagnetic *bcc* undergoes a *martensitic* phase transformation to non-magnetic *hcp* at ~10 GPa.



A strong shock wave will induce phase transitions producing complicated microstructure.



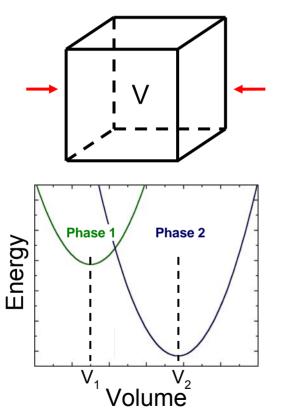
- considerable scatter in the measured transformation pressures
- large hysteresis

Goal: understand scatter and hysteresis in transition pressures

Phase Mixing

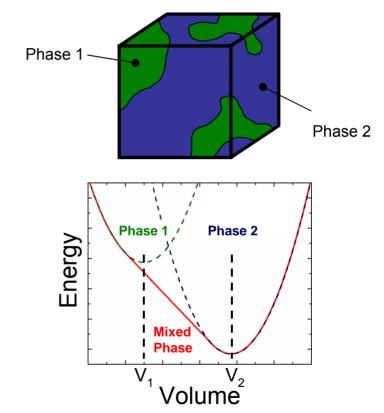
Constrained Two State System

- fixed amount in confined volume
- particles can be one of two phases



What is the composition for any V?

Mixed Two State System



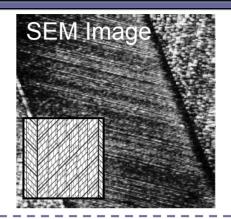
Gibbs construction – equation of state is given by drawing the line of common tangent

Mixing lowers the total system energy

Sequential Laminates

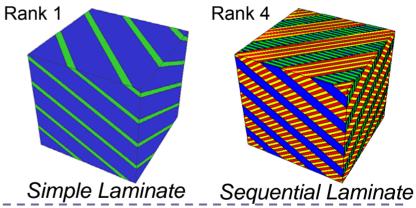
 a combination of layers composed of different uniform deformations (F), provided

$$V_{tot} = \sum_{i} V_{i}$$
 $V = Volume$
 $F_{tot} = \sum_{i} F_{i}$ $F = Deformation$



- layers composed of alternating phases
 - Simple Laminate : two layers, rank 1
 - Sequential Laminate: laminate of laminates,

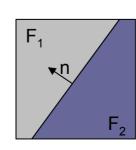
hierarchy of length scales

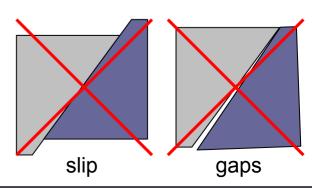


- laminate must be kinematically compatible
 - obey the Hadamard compatibility condition

$$F_1 - F_2 = \mathbf{a} \otimes \mathbf{n}$$

- no slip or gaps

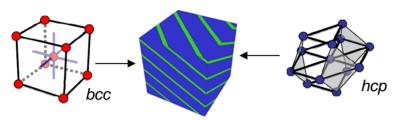




Multiscale Iron Model

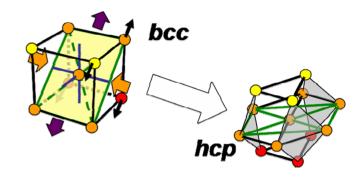
The model treats iron as laminates, not as single crystals

layers consist of bcc or hcp crystallite that minimizes the energy (W)



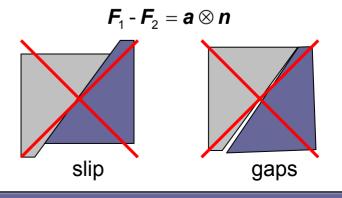
$$W(\boldsymbol{F}) = \underset{i=0,\dots,N-1}{min} W^{i}(\boldsymbol{F})$$

- allowed crystallites depend on transformation path variant an allowed bcc or hcp crystallite with a specific orientation
 - initially the crystal is a single grain
 - variants formed through a phase transformation

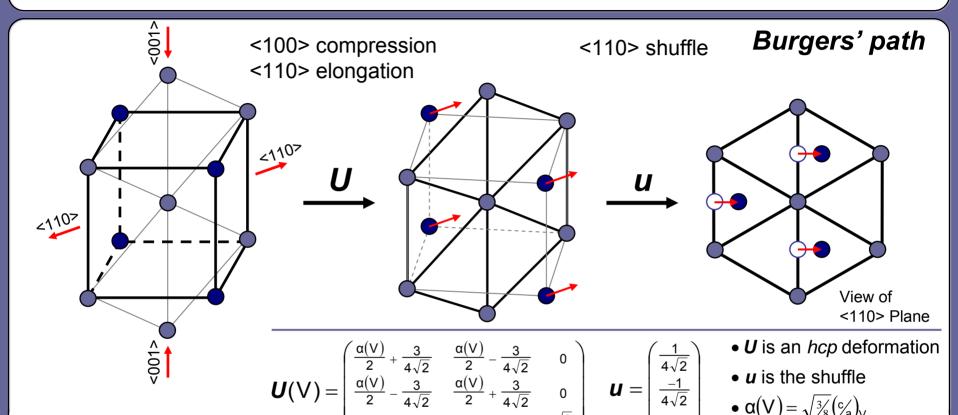


• Fs obey the Hadamard compatibility condition

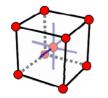
- this condition makes the problem non-trivial
- precludes direct optimization of volume fractions via the Gibbs construction (which ignores this condition)
- S. Aubry, M. Fago, and M. Ortiz, Computer Methods in Applied Mechanics and Engineering **192**, 2823 (2003).



bcc → *hcp* Phase Transformation



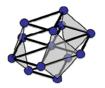
initial bcc variant



UG

 $G \in bcc$ point group

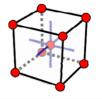
6 hcp variants



 $H \in hcp$ point group

12 bcc variants

• $\alpha(V) = \sqrt{\frac{3}{8}} (c/a)_V$



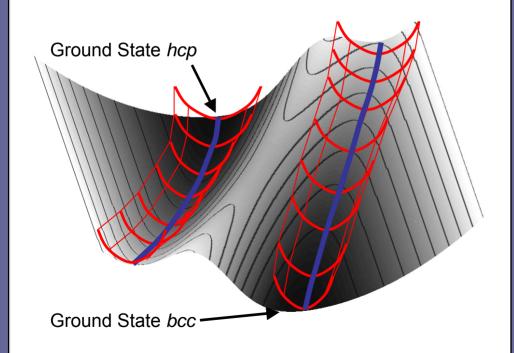
19 total variants

Variant Energy

$$W(\mathbf{F}) = \min_{i=0,\dots,18} W^i(\mathbf{F})$$

DFT calculations prove to costly for on-the-fly W(F) or tabulated W(F)

Assumption: each deformation close to deformation of a variant



Approximation: Taylor expansion around variant deformation

Taylor Expansion

$$W^{i}(\boldsymbol{C}) = W_{0}^{i}(V) + \frac{1}{2}(\boldsymbol{C} - \boldsymbol{C}^{i}(V))^{T} \boldsymbol{\Gamma}^{i}(V)(\boldsymbol{C} - \boldsymbol{C}^{i}(V))$$

$$\boldsymbol{\Gamma}^{i}(V) = \frac{\partial^{2} W^{i}}{\partial \boldsymbol{C}^{2}} \Big|_{\boldsymbol{C}^{i}(V)} \qquad \boldsymbol{C} = \boldsymbol{F}^{T} \boldsymbol{F}$$

DFT Calculations

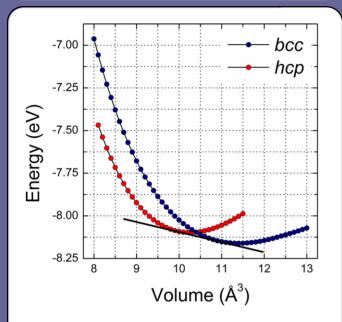
- Variant deformation, **C**ⁱ(V) (*hcp* c/a ratio)
- Equation of State, $W_0^i(V) = W^i(C^i(V))$

bcc and fcc: $\Gamma_{11} \Gamma_{12} \Gamma_{44}$ hcp: $\Gamma_{11} \Gamma_{33} \Gamma_{12} \Gamma_{13} \Gamma_{44}$

DFT Details

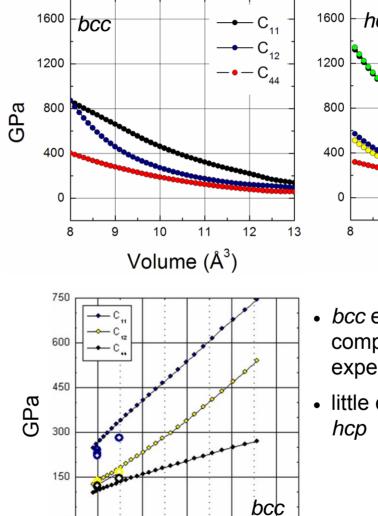
- Kohn-Sham DFT within VASP
- GGA and PW-91
- Projector Augmented Wave (PAW) all electron method
- 2 lons/Cell
- 24×24 ×24 Monkhorst Pack K-Point Grid
- 500 eV Kinetic Energy Cut Off
- Spin-Polarized for bcc

First Principles Input



bcc→hcp	Transition
7110	Pressure (GPa)
EXPERIMENT	10-15
FLAPW*	11.5
PAW	10

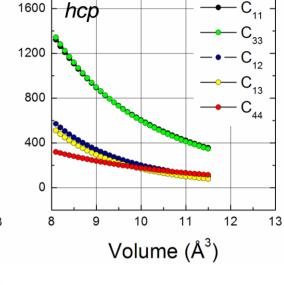
 PAW predicts the bcc to hcp transition pressure within the measured range



40

Pressure (GPa)

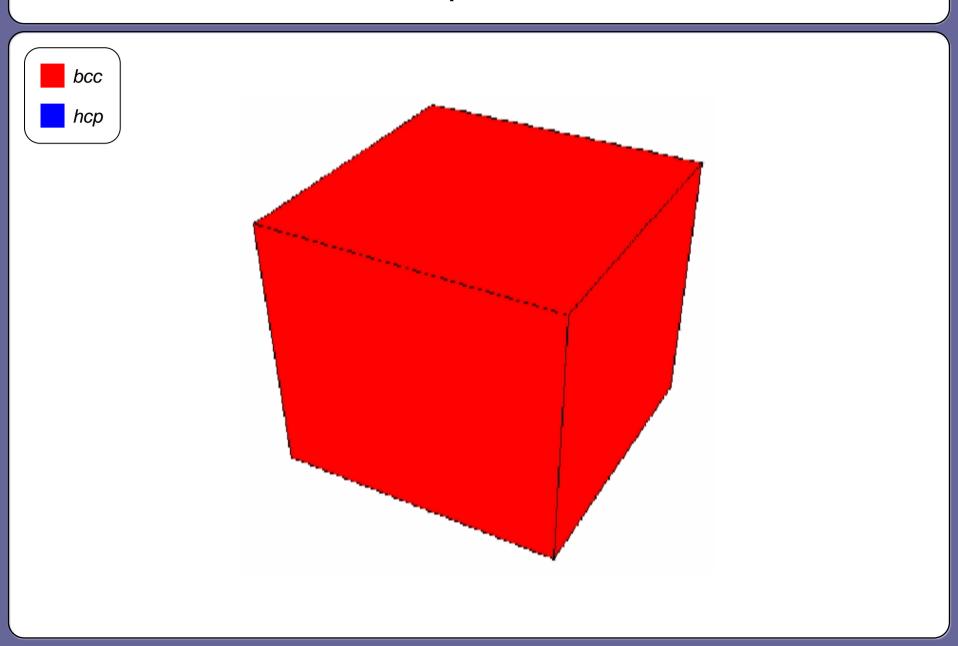
20



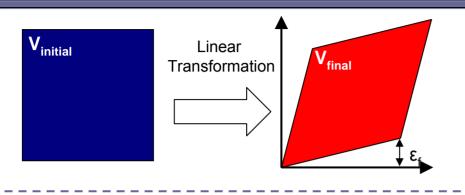
- bcc elastic constants compare well with experiment (C₁₁ a bit high)
- little experimental data for hcp

^{*} Herper, et.al, Phys. Rev. B **60**, 3839 (1999).

Compression



Shear Compression



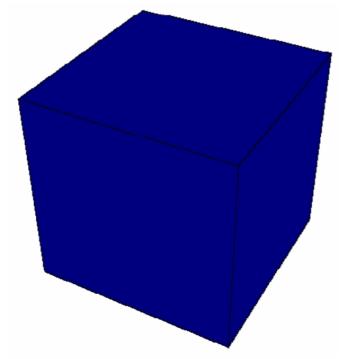
$$\boldsymbol{F}(\delta) = (1 - \delta) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \delta \begin{pmatrix} \lambda & \epsilon_f & 0 \\ \epsilon_f & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

undeformed bcc

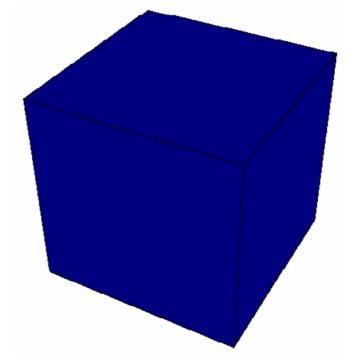
 λ is set such that $V=V_f$

(Note: det[F]=V)

$$\epsilon_{\text{f}}=0.03$$

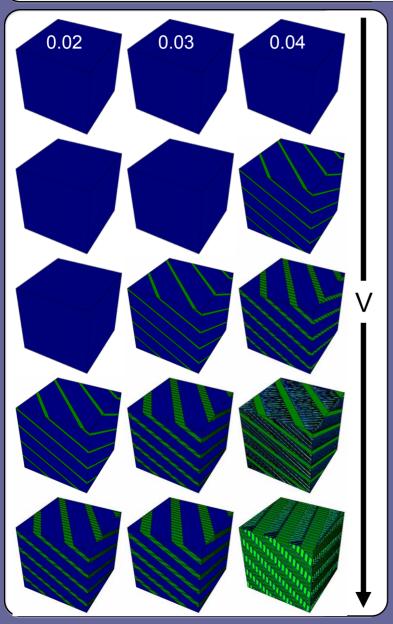


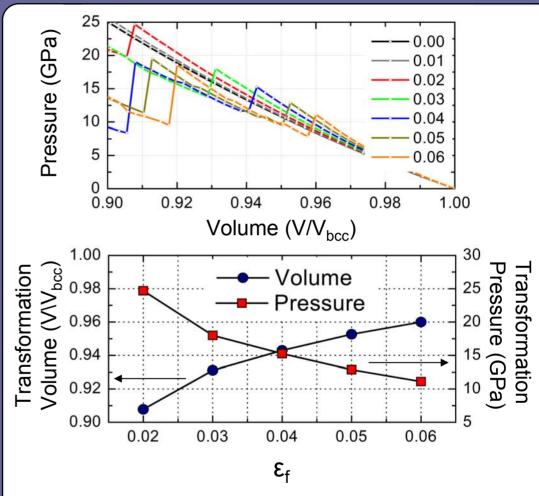
$$\epsilon_{\text{f}}=0.04$$



Note: mapped deformed volume onto reference volume

Role of Shear



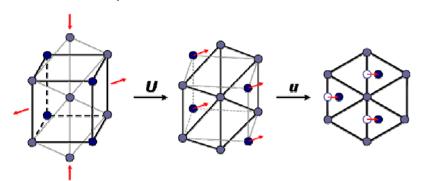


- shear is required to activate this transformation
- increasing shear lowers the TP and increases the TV
- variability in measured TPs may be due to shear states

bcc → hcp Phase Transformation

What are the average bulk properties of the bcc → hcp transformation?

To explore the transformation, we apply a series of volume-conserving deformations (F) along the transformation path.



$$\boldsymbol{U}(V) = \begin{pmatrix} \frac{\alpha(V)}{2} + \frac{3}{4\sqrt{2}} & \frac{\alpha(V)}{2} - \frac{3}{4\sqrt{2}} & 0 \\ \frac{\alpha(V)}{2} - \frac{3}{4\sqrt{2}} & \frac{\alpha(V)}{2} + \frac{3}{4\sqrt{2}} & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} \end{pmatrix}$$

$$\alpha(V) = \sqrt{\frac{3}{8}} \left(\frac{6}{4} \right)_{V}$$

bcc deformation

$$F_{\text{bcc}}(V) = V^{\frac{1}{3}} I$$

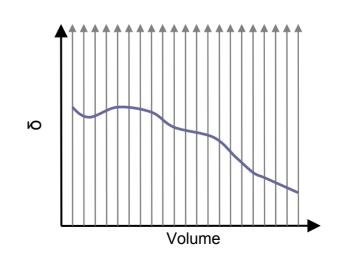
hcp deformation

$$\boldsymbol{F}_{hcp}(V) = \left(\frac{V}{\det \boldsymbol{U}(V)}\right)^{\frac{1}{3}} \boldsymbol{U}(V)$$

linear transformation

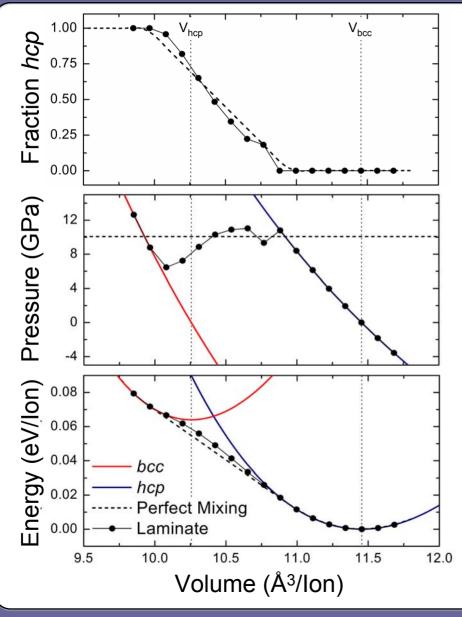
$$F(V, \delta) = \omega_{\delta}[(1 - \delta)F_{bcc}(V) + \delta F_{hcp}(V)]$$

 ω = volume-conserving scale factor
 $0 \le \delta \le 1$



The $F(V,\delta)$ that minimizes W determines the transformation properties.

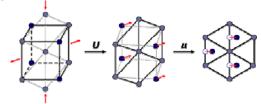
bcc → hcp Phase Transformation



- full conversion to hcp
- transition pressure of 10 GPa
- hallmarks of Gibbs construction
 - the lowering of the energy
 - the lag to full conversion to hcp
- deviation from Gibbs construction
 - no perfect tangent matching
 - energy is increased
 - caused by the two imposed constraints
 - Hadamard compatibility condition

$$F_1 - F_2 = \mathbf{a} \otimes \mathbf{n}$$

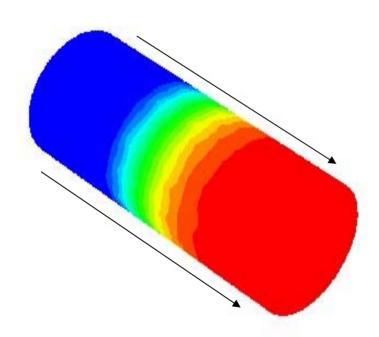
dependence on the transformation path



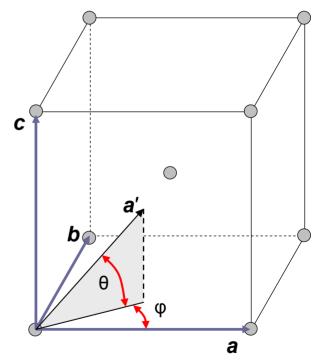
- constraints introduce frustration
- hysteresis width of ≈5.2 GPa observed
 - loading TP = 10.2 GPa
 - unloading TP = 5.0 GPa
 - experimental width 6.2 GPa (Taylor et al.)

Directional Deformation of bcc Fe

 propagating shock waves apply load in specific directions



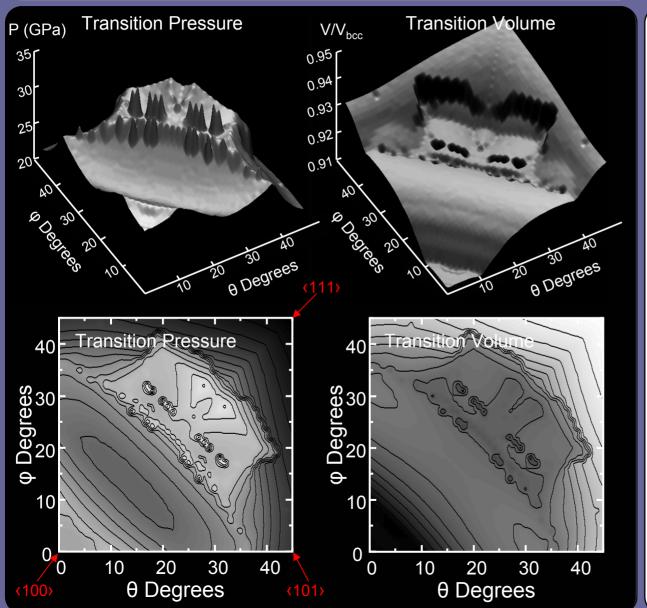
 what effect does the direction of applied load have on the transformation? • to investigate directional loading we applied the directional deformation ${\pmb F}_{\theta,\phi}(\delta)$ spanning all direction space (angle space)

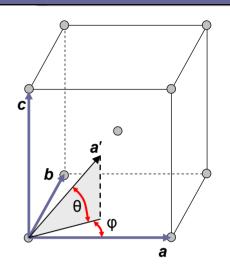


$$(\boldsymbol{a}', \boldsymbol{b}', \boldsymbol{c}') = \begin{pmatrix} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

$$\boldsymbol{F}_{\theta,\phi}(\delta) = \delta(\boldsymbol{a}' \otimes \boldsymbol{a}') + (\boldsymbol{b}' \otimes \boldsymbol{b}') + (\boldsymbol{c}' \otimes \boldsymbol{c}')$$

Directional Deformation of bcc Fe: TP and TV





TP for all angles is high, >20 GPa

 never optimal combination of contraction and and shear

region of high pressure for moderate angles

- perhaps no hcp variant along path

loading parallel to simple facets facilitates the transformation

- notably the <110> planes

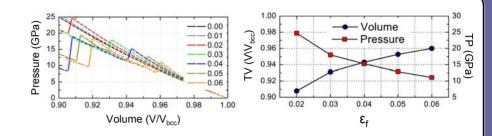
loading along the simple axes recovers smallest TP in that region of angle space

- <111>< <101>< <100>

Conclusions

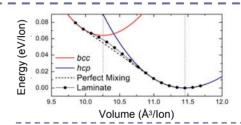
Shear Compression

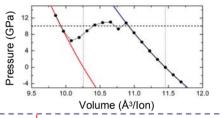
- shear is required for transformation to occur
- increasing shear lowers the TP and increases the TV
- sensitivity to shear may be responsible for the variability in the measured TPs



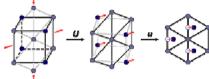
bcc-to-hcp Transformation

- full conversion to *hcp at* ≈10 GPa, consistent with the experimentally observed values
- hallmarks of the Gibbs construction
- deviation from "perfect" mixing due to imposed constraints
- shows hysteresis in the TP simply due to the crystalline kinematics



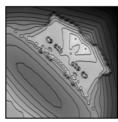


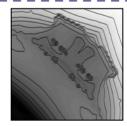
$$F_1 - F_2 = \mathbf{a} \otimes \mathbf{n}$$



Directional Deformation

- transformation pressure is > 20GPa
- region of very high transformation pressure
- loading || to simple facets facilitates the transformation, in particular along simple axes





Acknowledgements

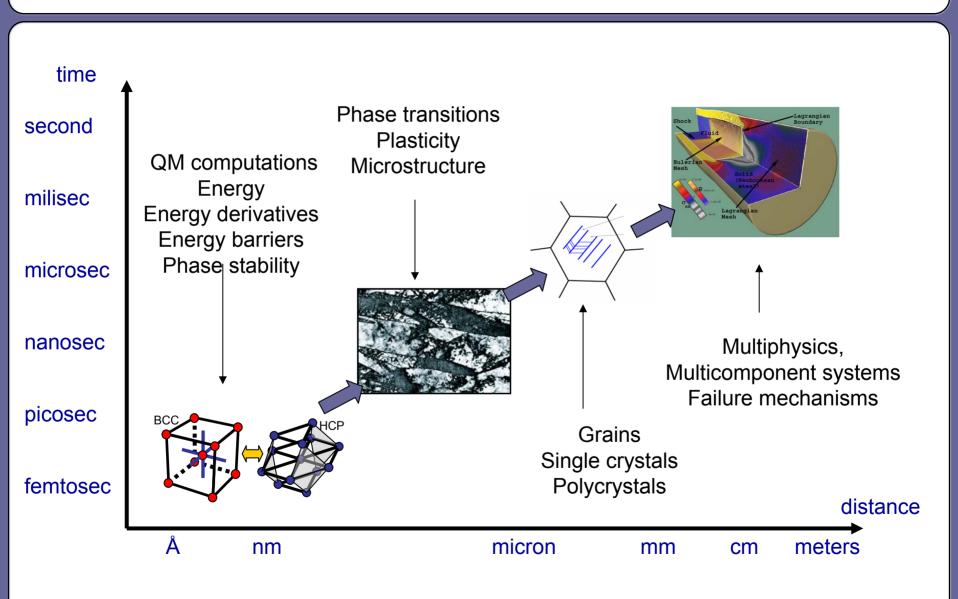
Matt Fago :S. Aubry, M. Fago, and M. Ortiz, Computer Methods in Applied Mechanics and Engineering 192, 2823 (2003).

De-en Jiang

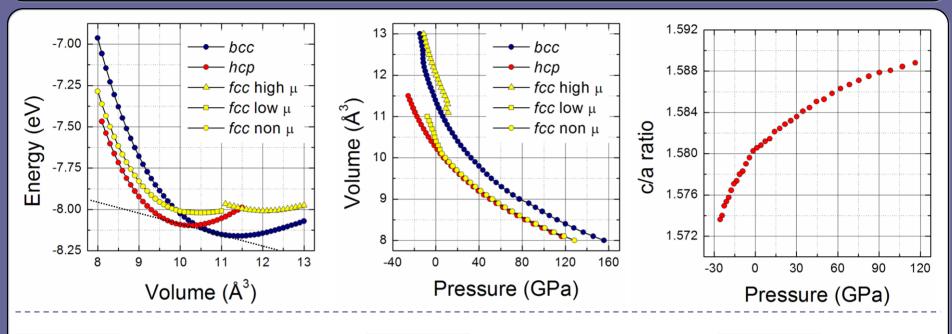
Robin Haves

Emily Jarvis

Multiscale Modeling



Calculated Equations of State



hcp	$V_0^{}$ (Å 3)	K₀ (GPa)	c/a
EXPERIMENT	11.09	208	1.61
FLAPW	10.20	291	1.58
PAW	10.25	293	1.58

$V_0^{}$ (Å 3)	K ₀ (GPa)	μ
11.69	172	2.22
11.40	174	2.17
11.43	172	2.21
	11.69 11.40	11.69 172 11.40 174

boo bon	Transition	
<u>bcc</u> →hcp	Pressure (GPa)	
EXPERIMENT	10-15	
FLAPW	11.5	
PAW	10	

- PAW reproduces the FLAPW results
- Both PAW and FLAPW do not compare well with experiments
 - Perhaps a problem with the extrapolation to T & P = 0

- PAW reproduces the FLAPW results
- Both PAW and FLAPW compare reasonably well with experiments
- PAW predicts the observed bcc to hcp transition pressure

Calculated Elastic Constants

